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REGRESSION~ADJUSTED ESTIMATES FOR REGENERATIVE SIMULATIONS, WITH GRAPHICS'j

—~————

P. Heidelberger P. A. W. Lewis®
IBM, T.J. Watson Research Center . Naval Postgraduate School
Yorktown Heights, N.Y. 10598 Monterey, Calif. 93940

ABSTRACT

Dist. special
L

The independent block structure of regenerative processes and the
vergence rates of the means of ratio estimators are exploited to produce bias-free
regression-adjusted estimates (rane's) for regenerative simulations. Direct assessments
of the vag;ances of the estimates are obtained, as well as indications--both formal and

graphical--of normality and symmetry, or lack of it, in the distribution of the estimates.

1. INTRODUCTION

In regenerative simulations one exploits the fact that the sample path of the
simulated process, say {Wi, i > 0}, can be divided into independent and identically

distributed (i.i.d.) blocks of lengths {t,, j > 1}. For example, let the quantity of

]
interest be the expected stationary waiting time, E(W), in a queue and let Y, be the

b

sum of the waiting times observed in the jth block. Then the usual regenerative
estimate, 1e(n), of E(W), formed from n blocks is 2e(n) = ¥/t where Y and T
are the averages of {Yl,..., Yﬁ}, and {rl,..., rn}, respectively. This estimate con-
verges to E(W) as n gets large and the so-called "statistics" of regenerative
simulation exploit the fact that xe(n) is asymptotically unbiased and normally dis-
tributed with a variance of a known form which can be estimated from the data [Crane,
and Iglehart (1975); Crane and Lemoine (1977); Iglehart (1978)].

An advantage of the regenerative estimate is that it eliminates the problem which
arises in straightforward simulations of choosing initial conditions so as to make
{Wi, i > 0} stationary and W, the sample path average, unbiased. It is crucial to
understand that the initial conditions are of importance only for finite sample

'y
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sizes so that the advantage of %e(n) over W disappears asymptotically. Given

this advantage, the regenerative estimate is usually employed and a single sample path

LR e R D T

is used for as long as one needs to simulate in order to achieve a given precision. At

R i e LR

that point the simulator assumes that the point estimate #¢(n) is both unbiased and
normally distributed. There are several problems involved in this "flying-blind"
procedure besides the fact that the assumptions of normality and no bias are typically
not verified and may nbt be true. Most notably, it is not known how to adjust confi-
dence interval widths to allow for the fact that the variance is estimated from the data

and is usually highly positively correlated with the point estimate. This correlation

is particularly troublesome in sequential procedures which use a relative confidence-
interval-width criterion for determining simulation run lengths.

A method which is preferable to using a single sample path would be to generate
m 1.1.d. sample paths, form an averaged estimate frém the m estimates obtained and
then produce the usual standard deviation estimate for a sample mean. Unfortunately

taking m sample paths of length n/m only aggravates the concern with bias and

normality of the estimate which occurs with both the straightforward and regenerative
methods.
In this paper we exploit two aspects of the regenerative structure of the simu-

lated process to resolve this dilemma. The first is that the regenerative blocks

are 1.1.d. so that a single simulation of n cycles can always be sectioned into k !
i.1.d. simulations of n o= n/k blocks per section for multiple values of k. Thus
from a single simulation of n blocks, unbiased (but correlated) estimates of

Secondly, unlike the

E(2e(n,)) can be obtained for the multiple values of n,. :
i

estimate ﬁ, the regenerative estimate has known bias structure, i.e., ‘f

E(ne(n)) = E(W) + Blln + 82/n2+ »++ . Combining these two facts and using regression

techniques an estimate and a graphical picture of the bias structure can be obtained.

More importantly, a regression adjusted regenerative estimate, aare(n), for E(W))

can be produced which corrects for the bias.
2




This procedure can ;t§glf bg rgglicgteq, say, m times_produging m i.i:d.
estimat;a rane(l,n),... ,nane(m,n) with low bias and the value E(W) can then be
estimated by arare(m,n), the average of these m rare(j,n)'s. Furthermore plots showing
the evolution to the unbiased state can be produced along with box plots displaying the
distributions of the estimates. Running normal plots with normal test statistics can
also be given for various subrun lengths n. These plots allow the user to judge the
subsample length n at which rare(l,n),...,2are(m,n) can be assumed to be normally
distributed. Using this sample of m xane's a standard deviation estimate, srare(m,n),
for the averaged aanga,anane(m,n), is obtained from which a confidence interval for
the steady state parameter is derived. Furthermore the sample of m, Zrare(l,n),...,
rane(m,n) , is available to do comparisons and rankings and to form multidimensional con-
fidence regions (when more than one parameter is of interest) using standard normal

theory statistical methodology or nonparametric methodology.

Other techniques which reduce bias in regenerative estimates are the jackknife
and Tin estimates [Miller (1970); Iglehart (1975)] and estimates based on renewal
theoretic properties [Heidelberger (1978), and Meketon (1979)]. As generally applied

these techniques remove only the 1/n term in the bias expansion (the jackknife can

be modified to remove the 1/n2 term at a great computational cost and an uncertain

effect on the variance of the resulting estimate). However, no guidance is given as
to when this bias reduction is sufficient and the jackknife is known to inflate the
variance in finite samples [Efron and Stein (1978); Goodman, Lewis and Robbins (1971)].
Furthermore, the problems of correlation between the point and variance estimates and
of detecting normality are not relieved by these alternative estimators. The regres-
sion and graphical procedures given in Sections 3 and 4 could be applied to estimates
for which the 1/n term has already been removed, by, for instance, jackknifing, al-
though this seems redundant. In practice the bias becomes insigificant long before the
assumption of normality is valid, particularly when bias reducing techniques are applied.
The work in this paper is related to that of Fishman (1977) who used replica-
tions with the Tin estimate to reduce bias, and a normality test. The strength of the

3
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regression adjusted regenerative estimate in conjunction with the graphics is that one

obtains a very clear picture of how the bias is changing and at what point it is insig-

nificant. In addition, the running normal plots show the convergence to normality.

To apply the methodology given in this paper in ﬁractice requires a relatively
sophisticated user to interactively interpret the output. This sharply contrasts with
previous automated sequential procedures [Fishman (1977) and Lavenberg and Sauer (1977)],
which require no human intervention, but which provide the user with far less informa-

tion, particularly about the dynamics of the simulation.

2. OBJECTIVES AND OUTLINE
The various regression adjusted estimates are described in Section 3 of the paper
and the graphics which has been developed to go with them are described in Section 4.
In Section 5 we describe a protocol which directs the.simulator in the use of the above
methodology.
The objective of this protocol 1s to produce, for a given precision or total
available computing, estimates rare(j,m), j = 1,...,m, from the shortest possible
number of blocks per replication such that the rane(j,m)'s are approximately
(1) wunbiased;
(i1) normally distributed.
The minimization of the number of blocks in each replication 1is done in order to optimize
the number, m, of replications of the simulation from which
(1) a standard deviation estimate 4rare(m,n) for the averaged Aane estimates,
arane(m,n), is obtained;
(11) a confidence interval for the parameter is obtained using 42ra1re(m,n)
and arare(m,n);
(1i1) a sample of m rare(j,n)'s is obtained to do comparisons, rankings, etc. using
standard normal theory statistical methodology or nonparametric techniques.
Of course in some situations it may well be that not enough independent blocks can
be simulated to be able to obtain replications. The utility of the proposed procedure

4
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then is that even though the user is forced back onto the regular regenerative estimate
ne(n) he is not doing so blindly. Moreover, the single regression adjusted regenerative
estimate rare(n) provides him with an essentially bias free alternative to the regen-

erative estimate.

In Section 6 examples of the use of the protocol and its graphical displays are
given for three queueing models and in Section 7 simulation results on the relative
properties of 2e(nm) and arare(m,n) are presented. Section 8 contains a summary,
indicates related topics for further research, and gives examples of situations other

than regenerative simulations for which this methodology applies. Table 4 gives a

summary of the notation used in the paper.
) 3. THE REGRESSION ADJUSTED REGENERATIVE ESTIMATE

Under broad conditions the expected value E(xe(n)) has the form

1

- -2
E(ne(n)) = BO + Bln + 32n oo (3.1)

where Bo = E(W). Let a section of n regenerative blocks be broken up into subsections
of lengths n, for k= 1,...,K and let m = [n/nk], where [x] denotes the greatest
integer less than or equal to x. For each k, m, regenerative estimates, &e(j,nk),
= 1,...,mk, are formed from disjoint blocks of n, cycles.

Regression adjusted regenerative estimates are formed by estimating 80 in
(3.1) using the ae(j,nk)'s for j = 1,...,mk, k= 1,..., K, and the equation (3.1)
to some degree d = 1,2, or 3. This can be done in three distinct ways:

(1) By forming average regenerative estimates, a&e(mk,nk), for k=1,...,K
vhere are(m ,n.) = E:El ne(y,m )/m , and using these as dependent variables in the
regression on 80 + Bln;I dooet Bdn;d. The averaging will tend to make the dependent
variables more normal than the individual ne(j,nk)'s and since var(ne(j,nk))

..y/nk + c/nilz ++++, then if we neglect the higher-order terms var(ane(nk,nk)) is
approximately y/n for all k = 1,...,K. Thus an unweighted least squares estimate

of Bo will produce 80. the sane(n) estimate unbiased out to terms up to llnd.

5
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(11) By using the /Le.(j,nk)/mk for § = 1""’mk’ k=1,...,k in a weighted
regression on Bo/mk + (Bllmk)n;l Feoed (Bd/mk)n;d. This is equivalent to (1) if

least squares estimation of BO,.... B is performed.

d

(111) Since it will be seen in later sections that ae(j,nk) is highly non-normal
for small o, robust regression methods could be used to eliminate the influence of
outliers. However, since the ae(j,nk)'s are generally not symmetric random variables,
the 80 estimate will generally be biased.

In this paper the nare estimate is always Bo obtained as in (i), which like
ne(n) 1s a statistic involving (Yl""’Yn) and (11,...,1n). The use of robust
regression techniques will be described elsewhere.

There are still three problems which make the regression non-standard:
(1) How large should K be, given that it must be at least greater than d+1?
{(11) The aae(mk,nk) are coréelated, which seems to mitigate against making K
too large.

(i1i) Given that K 1s chosen, how should the n, be chosen? This is an experimental ]

design problem.

These are difficult and comprehensive analytic problems, not considered here.
However, it is possible to show that the correlation between a&e(mk,nk) and
aae(mj,nj) converges to one if n + « in such a way that m and mj are fixed
divisors of n. Furthermore in this case var(1tare(n))/var(ne(n)) also converges to
one. For small to medium sample sizes one suspects that the correlation will inflate

the variance of the 2aare(n) estimate as compared to the variance of the se(n)

estimate. This frequently happens in small samples with the jackknife. However,

simulation studies presented in Section 7 show that var(aare(n)) 1is only very
slightly larger than var(te(n)) and that this result is robust with respect to the

choice of K and the nk's. Of course, choosing n, too small will result in non-

normality and, possibly, bias (the degree, d, being inadequate).

We emphasize here that the preference for the nare(n) estimate over and

above a jackknife estimate or a Tin estimate, is that its components allow one to
6




study the evolution of the regenerative estimate. The graphics to do this are dis-
cussed in the next sectionm.

Of course one utility of the jackknife is that it can be used with small samples
that a jackknifed variance estimate is available. However, this last advantage is not an
issue here since a standard variance estimate is available for regenerative estimate
ne(n); furthermore, once a sectioning into m sections is achieved, even this can be
dispensed with. A regression-based estimate of the variance of #e(n) can be constructed

but is not discussed here.

4. DESCRIPTION OF THE GRAPHICS

Three different types of graphs are used to display and analyze the output.

The first two, the Basic Graph and the Retrenched Graph, are quite similar and are
concerned with identifying the evolution of bias, skewness and departures from normality
(in the form of individual outliers or outlying sample paths) in the regenerative and
nare estimates. The third graph, the running normal graph, specifically displays the
convergence to normality of the estimates. These three types of graphs, described

in this section,all deal with the data of primary concern, namely, the re, are, ranre,
and arane estimates. They are novel and are adaptations of ideas which are pertinent

in other estimation contexts.

(Other plots that may be of interest in a regenerative simulation include
histograms and box plots of {Yk’ k > 1} and {Tk, k > 1}. Scatter plots of
{(Yk’rk)’k-z 1} show the high correlation that typically exists between Yk and Tper
These last three plots are useful in explaining the skewed distribution often exhibited -
by regenerative estimates. However, since we feel their importance is secondary and i

they are well known they will not be discussed here.)

We proceed by first describing the box plot which is a primary component of

the Basic and Retrenched Graphs. A descript;on and interpretation of the Basic and

Retrenched Graphs comes next, followed by a description of normal plots and the

third type of graph, a sequence of normal plots called a running normal graph.

A protocol for the interactive use of these graphs is outlined in Section 5 and

7




examples of its use is given in Section 6. The actual plots in this paper were pro-
duced on a Tektronix 4013 terminal using an APL graphics package. The user may wish

to refer to Table 4 for a summary of the notation used in the paper.

4.1. The Box Plot

A convenient and compact technique for displaying the distribution of a batch
of data is the box plot. These plots were introduced by Tukey (1977), although we
prefer the form adapted by McNeil (1977). The box plot is an excellent tool for
identifying skewness and asymmetry in the data as well as for detecting outliers.
The plot is therefore well suited to analyzing the often highly skewed and sometimes
wild output of queueing simulations (see, e.g., the left-most box plot of Figure 4C
at n = 50; the 160 regenerative estimates which make up the box plot are highly
positively skewed and clearly non-normal).

Figure 1 shows a sample box plot. The body of the box plot displays the median
and the lower- and upper-quartiles of the data. Let q represent the (estimated)
interquartile distance; q = upper quartile minus lower quartile. Those data points betwee-Q
the lower quartile minus 1.5q and the lower quartile minus q are marked by light circles,

as are those data points between the upper quartile plus q and the upper quartile

plus 1.5q. Those values below the lower quartile minus 1.5q or above the upper quartile
plus 1.5q are marked by dark circles and are meant to be indicated as outliers. For
normally distributed data, approximately 5% of the points should be marked by light
circles, but only about 1 in 200 should be marked by dark circles. One problem with

box plots is that they suppress sample size and this can lead to erroneous inferences;

gee McGill, Tukey and Larsen (1978) for extended box plots which take account of this.

For samples of size less than 9 the box plots are not very meaningful and the data points *
are laid out vertically by magnitude for visual inspection.

4.2. The Basic and Retrenched Graphs

The two primary graphs used in the output analysis are the Basic Graphic and
the Retrenched Graph. The Basic Graph provides, in the first stage of the protocol,

8
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FIGURE 1.

SAMPLE. BOX PLOT
PLOT OF 50 POINTS

UPPER QUARTILE + 1.SxINTERQUARTILE DISTANCE

LARGEST VALUE < UPPER QUARTILE + INTERQUARTILE DISTANCE

UPPER QUARTILE
MEDIAN
LOWER QUARTILE

SMALLEST VALUE 2 LOWER QUARTILE - INTERQUARTILE DISTANCE

LOWER QUARTILE - 1.SxINTERQUARTILE DISTANCE

INTERQUARTILE DISTANCE = UPPER QUARTILE - LOWER QUARTILE

Example box plot for fifty data points from a regenerative
simulation. The interquartile distance equals the estimated
upper quartile minus the estimated lower quartile. The light
circles are data points which fall between the largest value
less than or equal to the upper quartile plus the inter-
quartile distance and the upper quartile plus 1.5 times the
interquartile distance. The dark circles are data with values
above this latter point. Similarly for the lower part of

the box plot.
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preliminary estimates of the section length, n, and the degtée of the polynomial, d,
needed in the regression to reduce the bias to an inconsequential level. As the total
run length increases, the Retrenched Graph 1s used to adjust these quantities and to
monitor the distributional convergence of the ne's, are's and rare's.

The Retrenched Graph displays the results of performing m 1i.i.d. replications
of the regression as described in Section 3. The Basic Graph is essentially a special
case of the Retrenched Graph with m = 1. Examples of Basic Graphs are Figures 3A,

3B, 4A and 5A while Figures 3C, 3D, 3F, 3G, 3I, 4B, 4C, 4D, 4E, 4G and 5B are all

Retrenched Graphs. The following discussion describes the features of the Retrenched
Graph; it applies as well to the Basic Graph with m set equal to one. Following the
description is a discussion on interpreting the results of these graphs.

Let the total run length of N cylces be diyided into m replications of n

cycles per replication (or section). Let the subsection lengths within each section be

{nk, k=1,...,K} and let m, be the number of regenerative estimates, &e(j,nk), formed
from n cycles, that may be obtained from a total of n cycles; then o= [n/nk].

In the Retrenched Graph (see e.g. Figure 3C), the x-axis runs from 0 to n cycles.

Additional positions along the axis are provided for

(1) the single ne(mn), the regenerative estimate from the whole sample, marked by *

and labelled REG on the right-hand side of the graph;
(1i) the single arare(m,n) estimate, labelled ARARE and marked by o, with a
horizontal line through it and
(i11) the box plot at position ARARE of the n1anre estimates.
' =
Let a&e(mmk,nk) be the average of the ane(mk,nk) s, i.e. aae(mmk,nk)

;_1 ane(j,mk,nk)/m where ane(j,mk,nk) is the realization of aae(mk,nk) on the jth

replication. The set of points {nk, aae(mmk,nk)), k=1,...,K} are denoted by stars;

these are unbiased point estimates of {E(ne(nk)), k = 1,...,K}. The average bias curve,

i.e., the set of points {(nk, 2-0 Ein;i), k=1,...,K} where d 1is the degree of
fit and Ei is the average of the m 1i.i.d. estimates of the coefficient of n-i in
10




the bias expansion, is plotted as a connected curve. The hofizontal line at height
anane(m,n) represents the asymptote of the average regression curve. A box plot of
either {ane(j,mk,nk), j=1,...,m} (as in Figure 4G) or {ﬂe(j,nk), j= 1,...,mmk}
(as in Figure 4C) 1s displayed at x-axis position n, for each k. If less than
nine points are available for a box plot, the individual values are plotted as magnitude-
ordered circles rather than displaying a box plot for so few points; it is simple to
see the spread and location of the estimates this way.

A count of the number of aare(j,n) estimates which are less than #e(nm) is
given: this gives a rough sign-test for lack of bias in the {rare(j,n)}, with
ne(mn) being used as the true value. The values of arare(m,n), s1are (m,n), 42e(nm)
and ;(n;o. the usual regenerative standard deviation estimate based on all nm cycles,
are printed below the x-axis. In the BASIC GRAPH when m = 1 the ARARE standard
deviation is set equal to zero; the intent is to eveﬁtually use here a regression based
estimate for the standard deviation of xe(m):

With regard to interpretation, the ideal is a Retrenched Graph for which

(1) the average bias curve is smooth and, beyond [n/2], close to its asymptote and

relatively flat ;

(11) the estimates %e(nm), arare(m,n) and are(m,n) do not differ substantially;
(111) the distributions of {7e(j,n), j = 1,...,m} and {rare(y,n), j = 1,...,m}

are symmetric about Ze(nm) and their respective means, and
(iv) srare(m,n) and ;(nm) are approximately equal.
Figure 4G is just such a graph. When n 1is small enough that #%e(n) 1is still biased
and nare(n) needs to be used as a less biased estimated, this bias shift will show
clearly in the relative shift of the box plots of the ne(j,n)'s and the rare(j,n)'s
as in Figure 4C. -
Properties (1) and (ii) listed abov% and illustrated in Figure 3B are the ideals
in a Basic Graph. Because of the high correlation between anre(2,[n/2])) and xe(n),

a flat bias curve beyond [n/2] indicates that the difference between E(2e(n)) and

11




E(xe(in/2)) 1s small. This implies that the bias in #xe(n) 1s also small. The

Basic Graph is therefore very useful in determining the section length, n, to be

replicated even though the variability in the estimates may still be substantial.

Since a Basic Graph consists of a single replication, only limited distributional

information can be learned from it. However, the distributions of {&e(j,nk),

i= 1,...,mk} will give the user a general idea as to the variability in the data.
Further interpretation of these graphs is given in the protocol of Section 5

and the examples of Section 6.

4.3. Normal Plots and the Running Normal Plot

To detect a normal distribution, a more detailed analysis of the data than i
is possible with box plots is accomplished with normal plots. A number of statistical J
tests accompanying the normal plots may be used to formally test the hypothesis of
normality. Normal plots [see e.g. Wilk and Cnanadesikan (1968)] are formed as follows.
Let X = {xl, XZ’ e s Xh} be an i.i.d. sequence of random variables with 4
continuous distribution function F(x), == < x < «. Let &(x), == ¢ x € », be the {
standard normal distribution function and let 0-1(-) and F’l(-) be the inverse
distribution functions of ¢ and F respectively. Let X

<X < <X

(1) (2) (n)
be the order statistics of X. An estimate of F_l(k/n+1) is x(k) and for any

constants a, b (b > 0) a plot of the pairs of points {(Q-l(k/n+l), (X, .-a)/b),

(k) !
k=1,... , n} will, for large n, result in a straight line if X is a set of
normally distributed random variables (i.e. F = ¢). We standardize the plot by
= n 2_g2_tn S\ 2

setting a =X = Zk-l Xk/n and b" =8 stl (xk-X) {(n-1). Departure from linearity
in this normal plot indicates non-normality.

Formal tests of normality that we use include the Shapiro-Wilk stacistic
(1965) which was also used by Fishman (1977). For ease of computation
we apply the test to at most 50 of the points. The significance level of the test
was computed using the approximation in Shapiro and Wilk [1968]. Additional test statis-

tics are the coefficients of skewness and kurtosis (Snedecor and Cochran (1967), p. 86)

estimated by p3//ug and (“4/”2) - 3, respectively, where uy = ;:_1 (xk-i)j/n.

12




If the xk's are normally distributed, then for large n these moment étatistics are
approximately normally distributed with means zero and standard deviations /6/n
and /24/n respectively. A coefficient of skewness of kurtosis that differs from
zero by more than about two times its standard deviation indicates significant

departure from normality. Older tests of normality were based on these sample

coefficients; recently interest has renewed is using the pair of statistics as
a test for normality (see Shapiro and Wilk (1965)).0One can also use Kolmogorov-

Smirnov type statistics suitably adapted for the fact that the mean and standard

deviations are estimated from data (Lilliefors (1967)).
Figures 3E, 3H, 3J, 4F, and 4H are examples of a sequence of normal plots

of simulation generated estimates; we call this a running normal plot. The goal

of these graphs is to monitor the convergence to normality of the regenerative
estimates ne(j,nk) and to determine at what point normality may safely be assumed
to exist. In addition to the features previously mentioned, a line through (0,0)
with slope one is drawn for each normal plot in the sequence. For any subsection
length, n, either {de(j,nk), j= l,...,mkm} (as in Figure 4F and labeled REG) or
{ane(j,nk), §=1,...,m} (as in Figure 4H and labeled AREG) may be plotted in 1
addition to a plot of {rare(j,n) j=1,...,m}.

Placing multiple normal plots on a single running normal graph is very useful
in identifying trends in convergence. For example, in Figure 4F the plots of
{ne(j,500)}, {1e(3,1000)} and {rane(j,1000)} when examined individually do not

indicate significant departures from normality. However, when placed in sequence

along with the plot of {xe(j,250)}, they are seen to exhibit a pattern of skewness §

and nonnormality similar to that of {1e¢(3j,250)} (although to a lesser extent). Since

. normal plots and tests are difficult to interpret for small data sets,the comparison

between normal plots at small and large values of n is helpful.

13
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5. A PROTOCOL FOR SEQUENTIAL APPLICATION OF THE GRAPHICS

The following protocol outlines the sequential use of the regression adjusted
regenerative estimates and graphics in analyzing the output of a simulation. The
objective is to determine the total run length needed to achieve a given precision in
the simulation and to obtain a sectioning of that run length into m replications so
that the resulting Aare estimates are approximately unbiased and normally distributed.
The protocol consists of two stages. The first stage of the sequential protocol pro-
vides a preliminary estimate of the section length and the degree of the fitted regression
curve which 18 needed to eliminate the concern over bias, i.e. to obtain an approxi-
mately bias-free nane estimate. It also provides an initial estimate of the simula-
tion's vhriability. The second stage of the protocol increases the run length until

the desired accuracy is achieved. The degree and section length are adjusted along

the way to maintain low bias and increase distributional symmetry, When the final
accuracy is achieved, further adjustments are made to gain normality in the estimates
from each section.

We suggest that between 10 and 20 replications be available at the end of the
simulation, since an adequate estimate of the variance requires at least 10 observa-
tions (replications). Twenty observations should be sufficient for most comparison
purposes (Mosteller and Tukey, 1977, Ch. 7) and keeping more than 20 sections will
only slow convergence to normality. Thus, for example, if the plots showed that the
required precision was obtained with 40 sections,each of length 100 cycles, and that
the rane(3j,100)'s were approximately normal, we would still recommend refiguring the
simulation to 20 sections, each of length 200 .cycles.

The protocol is intended only as a guide and a user need not adhere to it
strictly. The whole point of the graphics is to assist users in exercising their
own judgment. |

Throughout the protocol we use N to represent the total simulation run

length (in cycles). The section length, or number of cycles per replication, is

14




denoted by n and m 1s the number of sections, or replicaticas; thus M = [N/n].
The subsection lengths, picked on the basis of empirical tests such as those detailed
i
|

in Section 7, are defined by n = {n/k] for k=1, 2, 3, 4, 7, 10.

I. Stage I-Pilot run ‘ 4

1. Set N, = initial run length.

0
2. Simulate a total of No cycles.
a. Set m = number of replications = 1
b. Set n = section length = number of cycles/replications = No i

c. Set subsection lengths n, = {n/k}, k=1, 2, 3, 4, 5, 7, 10.

3. Form Basic Graphs for degrees d = 1,2,3. g

a. Pick smallest d so that regression curve is smooth and fits data well. If no

such d can be determined increase No and go back to 1.2,
b. Find n*, the smallest n, so that the regression curve is nearly flat beyond
n* and there is little difference between ate([n/n*],n*), rare(n) and

are([n/n'},n") for n' > n*. If no such n* can be determined increase No

and go back to I.Z2.

c. Based on the spread of points in the Basic Graph and the regenerative
standard deviation estimate, a(No) project a new estimated run length
N to yield desired accuracy.

d. Set n =n* and go to Stage II.

(Note that one may conclude at this point that the regenerative cycles are so long
that for a given precision one must accept a biased and/or non-normal regenerative
estimate, although it would be better to accept the less biased but still non-
normal regression adjusted regenerative estimate. Note too in the case whére the
variability of ne(NO) and nane(uo) is high, the "power" of the procedures is

low and the decisions made here may have to be modified in Stage II.)




II. Stage 1I-—Retrenchment and Fine Tun{gg

1. Simulate a total of N cycles.
2, Set m= [N/n], where n was determined in Stage I.
3. Porm Retrenched Graphs for degrees d = 1,2,3.
a. Pick smallest d giving good fit to '{Ezzlmmk,nk)}.
b. If m > 20 and either
i. ane(mm) or arare(m,n) show substantial bias as indicated by the
average regression curve being far from its asymptote, or arare(m,n)

or are(m,n) being significantly different from #ne(N), or
Box plots of {7e(j,n)} or {rare(j,n)}, j = 1,...,m, indicate asymmetry

then double n and go back to II.2.

c. Otherwise if srare(m,n) and o(N) are sufficiently small to yield the desired
accuracy go on to II.4; otherwise project a new run length N to yield

desired accuracy and go back to II.l.

m>20 set m=20; if m < 10 set m= 10. Set n = [N/m].

Form Retrenched Graph and adjust the degree as in II.3.a.

Form normal plots of {rare(j,n)l; {ne(j,nk} and '{ane(j,mk.nk)} for
k =1,2,4.

If normality is indicated then stop.

If normality is not indicated, then

1. 4if m= 10 increase N 1if possible and go to II.1l;

ii. otherwise reduce m, keeping m > 10, and go to IIL.4.

Note that in this Stage we are trying (i) to fix more accurately the

sample size needed to attain the desired precision in the final estimate;

(11) to section so as to get enough degrees of freedom(m-1) in the variance estimate,

Aaaazz(m,n), so as not to sacrifice precision in this estimate, and (i1i) to keep n




as large as possible so as to ensure that the 2rare(j,n)'s are approximately

k' o normally distributed. The decision may, however, be that these conflicting objec-

tives cannot be met and a specific compromise has been adopted. This case will be

illustrated in the third example in the next section.

6. SOME EXAMPLE QUEUEING SYSTEM SIMULATIONS

In this section we give examples of the use of the protocol and the asso-
clated graphics and estimates in the analysis of the output of some simple queueing
systems. The systems are two single server queues with high traffic intensities and
a closed queueing network model of a computer system. The single server queues,
the M/M/1 and M/G/1 queues with traffic intensity 0.90 [see e.g. Kleinrock, 1975],
though simple in structure, exhibit substantial bias, produce highly skewed output
and require very long run lengths before stabilizing. They therefore provide

challenging tests of the methodology.

The closed queueing network on the other hand, requires relatively few
cycles before stabilizing. This example shows that the graphics can be of use even
when few cycles are needed. However, when the number of cycles is so small as
to preclude use of the Retrenched Graph, the assumptions of low bias and normality ;
cannot be verified and caution should be exercised. In fact the conclusion may be
the precautionary one that the regenerative estimate 1s very likely biased and non~
normal, the non-normality applying also to the regression adjusted regenerative

estimate.

a. The M/G/1 Queue (Examples 1 and 2)
2

Let {w&, n > 0} be the waiting time of the nth customer in a single

server queue and let {A , n > 1} and {S , n > 0} be the i.1.d. sequences of
? : interarrival and services times respectively. The waiting time sequence is defined

+ +
=0 and W, = W, + S, ~ A ) for n >0 where x = max(x,0). Assume

by W n+l

0
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Ah is exponentially distributed with mean 1/A and let S# be hyperexponentially

distributefl;_ P(.Su ) X) = 1-G(x) = p exp(-ulx) + (1-p) exp(-uZx). Then

E(S,) = 1/u = p/uy + (1-p) py, Variance(s ) = o2 = z{p/yi + @-p)udY - 142,

and the coefficient of variation of sn is C8 = Ho_. If the traffic intensity
18 p = A/u < 1 then regenerations occur whenever Wn = 0 and the waiting time .
has a stationary distribution with mean E(W) = p(1 + C:)/{Zu(l-p)}(seeRJeinrock (1975)).
If p=1 then the queue is known as the M/M/1 queue. For the M/M/1 queue of .
this section (Example 1) ) = 0.9, y = 1.0, p = 0.9 and E(W) = 9.00, whereas for

the M/G/1 queue (Example 2) A = 0.9, My = 0.5, Wy = 2.0, p=0.33, p = 0.9 and

E(W) = 13.42.

b. Closed Queueing Network (Example 3).

Consider the queueing network pictured in Figure 2. This network is a model
of a timesharing computer system. There are R service centers with a fixed number,
T, of customers in the network. Service Center 1 consists of T terminals. The {
terminal users submit jobs to a computer system consisting of a CPU (Service Center 2) j
and a number of peripheral input-output devices (Service Centers 3, ..., R). The
CPU operates under the processor sharing discipline while the peripherial devices

are each first-come, first-served single server queues. Let uIl be the mean of

the exponentially distributed service times at service center i. Routing through

the network is Markovian and the routing probabilities are given in Figure 2.

By assuming that all service and routing mechanisms are mutually independent then
Q = {Q(t), t > 0} is a continuous time Markov chain where Q(t) = (Ql(c),...,QH(t))
and Qi(t) is the number of customers in service center i at time t. The assump-
tions on the service distributions and disciplines and on the routing are such that

the equilibrium distribution of the network exists and has a product form (Baskett,

et al. (1975)). Define a response time to be the time from when a customer leaves

service center 1 until that customer next returns to service center 1 and let Wn

be the just completed response time of the nth customer to arrive at service center 1.

18
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Then W = {wn, n > 0} 1is regenerative with regenerations occurring at points n
such that the nth customer arrives at service center 1 leaving centers 2, ... , R,
empty. Again we shall be interested in the expected stationary response time

E(W) which is known to be finite (Lavenberg and Sauer (1977)). Let be

Py
the steady state utilization of service center i. The particular parameters chosen
for this model are listed in Figure 2 and yield Py = 0.894, Py = 0.268 for i > 3
and E(W) = 8.65.

The application of the methodology to these three examples is given in the

Figures; each Figure has a Caption and an Interpretation which, when read sequen-

tially describe the evolution of the simulation.
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Closed Queucing Network

Terminals
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’ SERVICE + [ - |

CENTER R

1
System Parameters
T=10 R=6 E(W) = 8.650
wil = 10.0 ot = 0.250 w7t = 0.300 for 1 > 3
1 2 i =
p = 0.850 Py = 0.250 for 1 > 3
CP 0.895 Py = 0.268 for i > 3

FIGURE 2. Closed queueing network which models a timesharing computer
system.




BASIC GRAPH
. M/M/1 p=0.9 |
1 REPLICATIONS OF 500 CYCLES
BOXPLOTS OF REG ESTIMATES

20 - e
- [
16 o
. 0/ 1
" ° RARES < REG
12
L
= —— = el %
sl ]
8 ? o ° ‘
o x
4 1 } 11 i i ] 1 B :1
50 166 S00 ARARE REG |
ARARE ESTIMATE  : 10.28
ARARE STD DEV : .00 i
REG ESTIMATE : 10.13
REG STD DEV : 2.08
DEGREE OF FIT : 3

FIGURE 3A, Example 1. Stage I, steps 1 and 2. Np set at 500 cycles. A
decision has been made on the basis of similar graphs that
d = 3 1s probably needed.

Interpretation. Since the precision (2¢0/u) is about 40%, and the
regression curve is still coming up to the asymptote, Ng = 500
may be too small. Therefore return to Stage 1.1 and set

No = 1000.
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BASIC GRAPH

M/M/1 p=0.9
1 REPLICATIONS OF 1000 CYCLES
o BOXPLOTS OF REG ESTIMATES

° RARES < REG
» o
° -]
‘12 F o
- — . *
- P’*, °
8t } °
:__KJ [ 1 1 { 1
‘100 333 " 1000 ARARE REG
ARARE ESTIMATE : 10.74
ARARE STD DEV : .00
REG ESTIMATE : 10.71
REG STD DEV : 2.03
DEGREE OF FIT : 3

FIGURE 3B. Example 1. Stage I, steps 1 and 2 with NO increased to 1000.

Interpretation. Since the regression curve beyond 500
and 1e(1000) and 1a1e(1000) are approximately equal, simulation
out to n = 1000 1is likely to be adequate. Since it is estimated
that about 16 times as many cycles are needed to cut the standard
deviation down by a quarter, an exploratory excursion to
Stage II with N = 4000 1is taken.
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12
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8 REPLICATIONS OF

RETRENCHED GRAPH
M/M/1 p=0.9
500 CYCLES

BOXPLOTS OF AREG ESTIMATES

o : 2/ 8
. RARES s REG
e ° o ° .
: : : (-] o .
—8— —
8 —
s ]
v ® s o °
AIAng,l 1 { 1 ] )
S0 166 500 ARARE REG
ARARE ESTIMATE : 9.26
ARARE STD DEV : .78
REG ESTIMATE : 9.23
REG STD DV : 91
DEGREE OF FIT : 2
FIGURE 3C. Example 1. Stage II, step 3a. N = 4000 and d cut back to 2.

Also n 1is cut back to 500 to determine whether,with this

greater precision, a firm decision can be made on section length n.
Note that the box plots are of the ane(j,nk) which show less skew-
ness then the 7ne(j,ny) 1in Figure 3b.

Interpretation. The 41a1e(8,500) of 0.78 is lower than the
regenerative s.d. estimate of 0.91., Clearly about two to three
times as many cycles are needed. There is also atill bias, as
illustrated by the upward displacement of the data points at ARARE
compared to the data points at n = 500. This shift is not
statistically significant but is reinforced by the fact that the
regression curve is increasing. The degree d = 2 1s now seen
to give a good fit. For illustrative purposes the next step is
to repeat this Retrenched Graph with twice the number of cycles.
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RETRENCHED GRAPH

M/M/1 p=0.9
16 REPLICATIONS OF 500 CYCLES
. BOXPLOTS OF AREG ESTIMATES
X
| ( 1
12} 1 f 8 / 16
|l x ¥ RARES < REG
.
10} © I -*
- 1
|
B.—
| y
8_ J( )()L ES X J< (
AT 500 AAE  ReC
ARARE ESTIMATE 9.76
ARARE STD DEV .54
REG ESTIMATE 9.72
REG STD DEV .65
DEGREE OF FIT 2

FIGURE 3D. Example 1. Stage II, step 3 repeated with N = 8000 for illustration.
Interpretation. The presence of slight bias in 2e(j,500) is

confirmed. It is also clear from the standard deviation estimates that
more cycles are needed to reduce the standard deviation to less than
0.5. At this point a running normal plot is helpful and is given in
the next figure.
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M/M/1 p=0.9 NORMAL PLOTS
16 REPLICATIONS OF 500 CYCLES

REGL 1251 REG[( 2501 REG[L 5001 RARE
SHAPIRO-WILK .866( .000) .955( .234) .962( .673) .974( .873) (SIG LEV)
SKEW 1.143( .306) .362( .433) -.216( .612) -.075( .612) (SD SKEW!
KURTOSIS .693( .612) -.751( .866) -.708(1.225) -.634(1.225) (SD KURT)

FIGURE 3E. Example 1. Supplement ot Figure 3D. N = 8000 cycles.

Interpretation. Note that while the %e(j,125)'s are clearly non-
normal, there is no indication, graphical or from the test statistics,
of departure from normality either in 2xe(3j,500) or nare(j,500). The
number of cycles will now be doubled to reach the desired precision;
but first the need to go to n = 1000 for reasons of bias is explored.




RETRENCHED GRAPH
M/M/1 p=0.9

8 REPLICATIONS OF 1000 CYCLES

BOXPLOTS OF AREG ESTIMATES

12
[ . .
° -]
- ° g 3/ 8
; RARES < REG
. L
—* -
3 8f "3,
4 e
6 e ° ° e
O° ° °
1 1 1 1 | 1 1 1 J
100 332 1000 ARARE REG
ARARE ESTIMATE 9.70
ARARE STD DEV .63
REG ESTIMATE 9.72
REG STD DEV .65
DEGREE OF FIT 2

FIGURE 3F. Example 1. N = 8000 cycles. Illustrative retrenched graph giving

confirmation of the basic graph in Figure 3b.

Interpretation. The bias, if any, at n = 1000 is small, and
would be taken care of by using the 1ane(j,1000)'s instead of the
ne(§,1000)'s. Notice the evolution of the extreme, low outlier.
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RETRENCHED GRAPH

M/M/1 p=0.9
32 REPLICATIONS OF 500 CYCLES
} BOXPLOTS OF AREG ESTIMATES
X
i ¥ | X
B X 17 /32
s T RARES s REG
lf %
- . X
a —i —
- X X
- x X X X
0 ulss l ‘ S(Im AR:\RE RéG
ARARE ESTIMATE : 9.11
ARARE STD DEV : .35
REG ESTIMATE : 9.06
REG STD DEV : .42
DEGREE OF FIT : 2

FIGURE 3C. Example 1. Stage II, step 3 with N = 1600 cycles.

Interpretation. The two estimated standard deviations are close
and indicate that at least 10% precision has been attained. We
are at Stage II, Step 3C here and ready to go to Stage II, Step 4.
Since m > 20 and there is some bias, n should at least be doubled.
First we look at the normality in the next figure.
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SHAPIRO-WILK .866( .000) .942( .029) .961( .339) .965( .428)

M/M/1 p=0.9 NORMAL PLOTS
32 REPLICATIONS OF S00 CYCLES

REG[L 125] REGL 2501 REG[ S001 RARE
(SIG LEV)

SKEW 1.124( .217) .592( .3068) .265( .433) .370( .433) (SD SKEW)

KURTOSIS 1.057( .433) -.404(

FIGURE 3H.

Example 1. N = 16000 cycles.

Interpretation. Another look at normality with twice the amount of data
as was available in Figure 3D. Again there is no formal indication of depar-
ture from normality in the 2an1e(j,500)'s, but it is to be recalled that with
only 32 data points, tests for normality have relatively low power. A visual
comparison of the xzare(j,500)'s to the 2ne(j,125)'s and 2e(j,250)'s indicates,
however, the possibility of nonnormality. Since m= 32 > 20, n is now doubled.
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| RETRENCHED GRAPH
: M/M/1 p=0.9
~ 16 REPLICATIONS OF 1000 CYCLES
’ o BOXPLOTS OF AREG ESTINATE?
: ) F X
f x ¥ }r y
F‘ - ° X 9 /16
° . RARES s REG
10} X .
.X T
| —k
8 -
"
" X
? 6 44 } X Jk X
r : 12\6l = 3;2 - 10|00 ARARE REG
3 ARARE ESTIMATE 9.06
; ARARE STD DEV .37
REG ESTIMATE 9.06
% REG STD DEV : .42
E . DEGREE OF FIT 2

FIGURE 31. Example 1. N = 16,000 cycles. Final steps of Stage II of the
protocol. Note the similarity between this Figure and Figure 3F
illustrating the stability reached with this sample size.

3 Interpretation. The bodies of the box plots of the rare(j,1000)'s
and the 2¢(j,1000)'s (for j = 1,...,16) indicate that there is very
little to choose between them; their spreads are similar. Also there

] are no extreme values or outliers. The estimated standard deviation

P of 0.37, 41a1e(16,000) indices that better than 10% precision has

L been achieved. A retrenched graph with degree d = 3 isg indis-
tinguishable from this graph.
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M/M/1 p=0.9 NORMAL -PLOTS
16 REPLICATIONS OF 1000 CYCLES

REGL 2501 REGC 5001 REG[ 10001 RARE
SHAPIRO-WILK .941( .026) .961( .339) .992( .999) .988( .993) (SIG LEVY
SKEW .592( .306) .265( .433) -.066( .612) -.007( .612) (SD SKEW$
KURTOSIS -.404( .612) -.829( .866) -.383(1.225) -.319(1.225) (SD KURTH

FIGURE 3J. Example 1. N = 16,000 cycles. Final look at normality Stage II, Step 4C.

Interpretation. For illustration the %e(j,ny)'s are shown, rather
than the are(j,ny). There is no indication of departure from normality
in the 2rane(j,1000)'s or the ne(j,1000)'s.
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BASIC GRAPH

M/G/1 p=0.9
1 REPLICATIONS OF S00 CYCLES
BOXPLOTS OF REG ESTIMATES

20" (o]

- 0° °
er . | 0/ 1
L . ° : RARES < REG
.
12 F |
i — - ' »* '
‘8F 5
4} .
j 1 1 | | H ]
S0 250 500 ARARE REG
ARARE ESTIMATE : 11.06
ARARE STD DEV : .00
REG ESTIMATE : 10.37
REG STD DEV : 2.76
DEGREE OF FIT : 3

FIGURE 4A. Example 2. Stage 1, steps 1 and 2. Np set at 500 cycles.
. A decision has been made on the basis of similar graphs that
! d = 3 1is probably needed.

: Interpretation. Because of the skewed service time, there

: is more variability in this queue than in the M/M/1 queue. The

: regression curve is definitely still rising so that n = 500

! . may be too small. Also the precision is about 50%, so that about
25 times more cycles are needed. An exploratory Retrenched Graph
is needed.
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RETRENCHED GRAPH

M/G/1 p=0.9

4 REPLICATIONS OF
BOXPLOTS OF REG ESTIMATES

X
!

500 CYCLES

° o
(
f
1 1 1/ 4
° RARES < REG
° ° ’
e ° °
,_.t *
-]
X X
1 L1 1 1 ! J
250 S00 ARARE REG
ARARE ESTIMATE 11.72
ARARE STD DEV .74
REG ESTIMATE 10.89
REG STD DEV .94
DEGREE OF FIT 3
Figure 4B. Example 2. Stage II, step 3a.

No = 2000 and n = 500.

Interpretation. There is'clearly still bias in the
ne(3,500)'s and a need for more precision. Four times as

many cycles are possibly needed; this is the "otherwise" of

Stage I, Step 3c.
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RETRENCHED GRAPH
M/G/1 p=0.9
500 CYCLES

BOXPLOTS OF REG ESTIMATES
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- o ¢ 9/ 16
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6
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L1 1 1 ] )
S0 250 . S00 ARARE REG
ARARE ESTIMATE : 12.77
ARARE STD DEV : 1.01
REG ESTIMATE : 12.70
REG STD DEV : 1.04
DEGREE OF FIT : 3
Figure 4C. Example 2. Stage II, Steps 1 through 3 with NO = 8000 and n = 500.

Interpretation. Note that the estimated standard deviations
This is because
several very long cycles were encountered; these show up in the
upper outliers in the 7%e(j,ny) box plots. We are back at the

have increased from their values in Figure 4B.

"otherwise" of Stage II, Step 3c and increase N
33
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to 16,000.
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RETFENCHED GRAPH

M/G/1 p=0.9
32 REPLICATIONS OF S00 CYCLES
BOXPLOTS OF AREG ESTIMATES
0
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o . X X

20 Q@ 1 i i 1
S0 250 500 ARARE REG
ARARE ESTIMATE : 13.62
ARARE STD DEV : .94
REG ESTIMATE : 13.78
REG STD DV : .87
DEGREE OF FIT : 3
FIGURE 4D. Example 2, Stage II, Steps 1 through 3 with N. =16000 and

n = 500. 0
Interpretation. The point estimates have risen in value

and the estimated standard deviations have dropped, but not

quite enough to give 10% precision. Note that the true

E(W) = 13.42., There is clearly still some bias in the

ne(3,500) 's; of the rare(j,500)'s, nineteen are less than or

equal to 4e(16000).
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RETRENCHED GRAPH
M/G/1 p=0.9
20 REPLICATIONS OF 1000 CYCLES
BOXPLOTS OF AREG ESTIMATES
o

°
20 ® o
- o ° | 10 / 20
° X X X RARES < REG
16 F e O X
i *
12 -
X
8 .
1 L S |
1000 ARARE REG
ARARE ESTIMATE : 13.43
ARARE STD DEV : .75
REG ESTIMATE : 13.44
REG STD DEV : 7S
DEGREE OF FIT : 2

FIGURE 4E. Example 2. Stage II, steps 1 through 3 with Ng 1increased to
20,000, the maximum number which computing constraints allowed.
The degree of fit is d = 2, sufficient for the purpose, as
compared to d = 3 in Figure 4D. The section length n 1is
increased to n = 1000.

Interpretation. There 1s still indication of bias at
n = 1000, but more particularly of outliers in the xe (j,1000)'s
and rare(3,1000)'s which need to be looked at in a running
normal plot. Note that it is not quite possible to attain 102
accuracy.
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M/G/1 p=0.9 NORMAL PLOTS
20 REPLICATIONS OF 1000 CYCLES

REGI 2501 REG[ 500) REGL 10001 RARE

SHAPIRO-WILK .8S0( .000) .968( .409) .959( .516) .943( .265) (SIG LEV®
SKEW 1.142( .274) .487( .387) .606( .548) .691( .548) (SD SKEw
KURTOSIS 1.154( .548) -.097( .775) -.171(1.095) .05S6(1.09S) (SD KU

FIGURE 4F. Example 2. Running normal plot accompanying Figure 4G.

Interpretation. The definite non-normality in the
7e(j,250)'s 18 no longer apparent in the values of the test
statistics at n = 1000. However outliers are clearly apparent
in the 1e(3,1000)'s and rane(j,1000)'s, suggesting, since
m = 20, that n be doubled. (Stage II, step 4d.)
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10 REPLICATIONS OF

RETRENCHED GRAPH

M/G/1 p=0.9

2000 CYCLES
BOXPLOTS OF AREG ESTIMATES

which keeps m > 10, as required.
precision 4000 more cycles would have been desirable. b

Interpretation.

20+
B X 5/ 10
" X 0 RARES < REG
16 | I '
.y ;
12k
i X X X X
X
8T
I W I ! ! 3 a
200 666 2000 ARARE REG '
ARARE ESTIMATE 13.54
ARARE STD DEV .83
REG ESTIMATE 13.44
REG STD DEV .75 #
DEGREE OF FIT 2 ’
FIGURE 4G. Example 2. Stage II, step 4 with n increased to 2000,

To achieve the desired

The bias has been reduced but more
importantly the heavy tails in the estimates have disappeared
(as compared to Figure 4E) at all n 's.

results a running normal plot is created.

To confirm these




M/G/1 p=0.9 NORMAL PLOTS
10 REPLICATIONS OF 2000 CYCLES

AREG( 5001 AREG[10001 AREG[20001 RARE ‘

SHAPIRO-WILK .984( .982) .971( .890) .977( .944) .979( .952) (SIG LEV) -
SKEW .319( .775) .143( .775) .118( .775) .032( .77%) (SD SKEW!
KURTOSIS -.671(1.549) -1.090(1.549)-1.036(1.549)-1.048(1.549) (SD KURT?

FIGURE 4H. Example 2. Final check for normality with n = 2000 cycles.
Note that the plots at 500 and 1000 are of the anane(j,nk)'s.

Interpretation. The test statistics and the normal plots
confirm the apparent normality of the estimates at n = 2000,
although the sample size m = 10 is very small. The estimate
arane(10, 2000) would be preferred to are(10,2000) because
of bias considerations.
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BASIC GRAPH
QUEUEING NETWORK 1

' 1 REPLICATIONS OF o0 CYCLES
0. . BOXPLOTS OF REG ESTIMATES
° o 1/ 1.
B . ° o RARES < REG
| o o © ° - . "
8 = 8 ° o ° .
-
6k
" e
4 11 1)1 1 1q 1 ]
16 S0 ARARE REG
ARARE ESTIMATE : 8.43
ARARE STD DEV : .00
REG ESTIMATE : 8.49
REG STD DEV : .23
DEGREE OF FIT : 2
FIGURE 5A. Example 3. Stage I, steps 1, 2 and 3. No set at 50 cycles:

Degree of fit {8 d = 2.

Interpretation. This initial basic graph shows that the bias is
probably very low at n = 50 and that the accuracy is already less than
6%. Clearly the 2e(j,5)'s are non-normal but there is insufficient
data to judge the distributions of the other estimates. Since cycles
are relatively expensive, in practice a decision to terminate the
situation at this point would be made. Thus the assumptions of low

bias and normality are not confirmed. For purposes of exposition,
however, the 50 cycles are replicated 25 timeg for the next figure.
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RETRENCHED GRAPH
QUEUEING NETWORK 1

...25.REPLLICATIONS OF S0 CYCQES
12 BOXPLOTS OF REG ESTIMATES
o
16 /7 25
~ RARES s REG
——
8 o
R a'
$
41 8
0
. 09
@
0 —"""1 | 50 ARARE FEC
ARARE ESTIMATE 8.64
ARARE STD DEV  : .08
REG ESTIMATE 8.68
REG STD DEV .06
DEGREE OF FIT  : 2
FIGURE 5B. Example 3. Stage II. N = 1250,

Interpretation. This retrenched graph shows clearly that bias
is nonexistent at n = 50. Note that 16 of the rane(3j,50)'s are
less than 1e(1250). Note too the extreme negative skewness of the
ne(3,50)'s; this seems to have disappeared by n = 50 both for the
ne(3,50)'s and n1ane(j,50)'s. The very flat bias curve and the
slight asymmetry in the distribution of the xrare(j,50)'s suggest
that the degree of fit in the regression could be cut back to one.
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7. EMPIRICAL RESULTS

In this section we empirically compare the relative properties of the estimate

2e(mn) and arare(m,n) for the single server queues.  These studies give the results

alluded to in Section 3; namely that the arate(m,n) estimate has low bias, and variance

and mean squared error (mse) comparable to those of the regenerative estimate.
Furthermore confidence intervals formed using arare(m,n) and Shane(m,n) are valid,
i.e. the confidence intervals contained the true value with the correct, prespecified
probability. Thus even for large samples, a user looses nothing by switching from
the regenerative to the anane estimate. The substantial benefit of doing so is that
the user may easily judge what constitutes a "large sample" and at what point the
asymptotic theory is valid. 1In addition arare(m,n) and srane(m,n) were less
correlated with one another than were the regenerative point and standard deviation
estimates, ze(mn) and ;(nm). .

The above mentioned experiments, the results of which are compiled in

Tables 1, 2, and 3, were conducted as follows. The systems tested, as in Examples 1
and 2, were highly congested M/M/1 and M/G/1 queues (p = 0.9). For each system
and several combinations of m sections, n cycles per section and subsection lengths
{nk}, R independent simulations of m X n cycles were performed. These queues were
simulated using the FORTRAN language and the random number generator described in
Learmonth and Lewis (1973). Different seeds for the generator were used for differ-
ent systems and different values of m X n. On each replication the following
quantities were computed: re(nm), ¢ware(m,n), ﬁxz(mmk,nk), a(mn), Anaae(m,g).and
AEZZ(mmk,nk). The entries in the tabies are best explained by an example.

Consider the first row of Table 2. Let ne, (4000) and G, (4000), for ;
i=1,...,R, be respectively the realizations of the regenerative point and standard
deviation estimates based on the 4000 cycles of the ith replication (m = 8, n= 500).

The column labeled W contains the sample average, say Wﬂe. of {nei(aoOO),

y R
1 b lgon',R}; wR‘e - ‘1.1

121(4000)/R = 8§,76. This is an unbiased estimate of
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E(1¢(4000)), whose value is unknown. The sample standard deviation of iue is

1/2 = 0,09 and is listed in the columm

s(W,,) = [T}, {re,(4000) - ¥, }2/R(R-1)] |
.1abeled. -l(‘})-.‘ - Thus -a-90% - confidence- interval for.-E(£8¢4000)) 15 8.76-+ 1,645 % 0.09- . . 4
= 8.76 + 0.15. Since for this example E(W) = 9.00 doés not fall within this con-
fidence interval we conclude that %e(4000) is significantly biased. An estimate

of the mean squared error of /¢(4000), MSEMQ = ,5_1 (nei(AOOO) - E(w))2/R = 0.87, ;
is 1isted in the MSE column of Table 2. Similarly estimates of the correlation

and Spearman, or rank, correlation coefficients (Snedecor and Cochran (1967))

between 22(4000) and ;(4000), 0.77 and 0.67, respectively, are listed.

Using 421(4000) and 81(4000) alleged 90% confidence intervals,
421(4000) + 1.64581(4000), for E(W) were also formed. The fraction of these
confidence intervals that actually contained E(W) is reported in the column labeled
"90% coverage." This fraction, called '(90%) coverége," should be close to 0.90
if in fact valid confidence intervals are being formed. Any coverage less than
or equal to 0.85 in Table 2 (with R = 100) and any coverage less than or equal
to 0.865 in Tables 1 and 3 (with R = 200) are significantly less than 0.90
at the 0.10 level.

Table 1 focuseson the effects of changing the set of subsection lengths
{nk} on the auune estimate. The table reports results of simulations of 2000
cycles of the M/M/1 queue with p = 0.9. The graphs of Section 6 show this to be
a relatively short run length. The estimates in this table used a polynomial
of degree 3 in the regression; degrees 1 and 2 are omitted since they showed the
same trends but with higher bias and lower coverage. Notice that the arare

estimates for which the smallest value of n is n/10 (subsection sets

83, Sa, S7 and S8 in the table) show less bias and higher coverage than those
with values of n < n/10 (sets Sl, §,» Sg and 86). The values of o in
subsection sets S, and S, are n/10, [n/7], n/5, n/4, [n/3], n/2, and n,

which is the recommended set of points. Due to the high correlation between the
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estimates for different values of L there is little, if aﬁy, advantage in using
. apre values of n than are in the recommended sets (compare sets s3 versus 84
and S7 versus sa). The arare estimate is relatively insensitive to the subsection " ° °°*
lengths as long as they are not too small. However, in some cases adding points that
are not divisors of .n will increase the aranre's variance. The set of points recom-
mended above is relatively small and has consistently yielded satisfactory results.
Tables 2 and 3 report the results of regenerative simulations with more
cycles than the simulation of Table 1. The main trends to notice in these tables
are that:
(1) the bias, standard deviation, coverage and mse of @dte(m,n) is comparable
to that of 41e(mn);
(11) arare(m,n) shows—lewer- bias, lower mse and higher (truer) coverage than are(m,n),

(1i11) for fixed values of m X n 1t is preferable to have small values of m,

the number of sections, in terms of bias, mse, coverage and correlation
between point and standard deviation estimates, and
(iv) the correlation between 2e(mn) and o(mn) is higher than that between

arware(m,n) and Ssrane(m,n).

This last property warrants further discussion. As n, gets large the a&e(j,mk.nk)'s
converge to normal random variables and since rane(j,n) is a linear combination of
{aﬂekj,mk,nk). k = 1,...,K}, it too converges to normality. Thus arare(m,n)

and 4rare(m,n) are asymptotically independent. The nonzero correlations in

Tables 2 and 3 indicate that for these highly congested queues the convergence

to normality is very slow and that the independence of mean and variance 1is quite

sensitive to the normality assumption. Of course these correlations are seen in

Tables 2 and 3 to be less than the correlation between 1e(mm) and o(mm). Also

non-parametric methods can be used with the set of m 2aare(j,n)'s. ﬁ
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The high correlation between #e(N) and g(N), where N = mn, is of particular,

concern gince sequential rules for determining simulation run lengths typically rely
on the relative width of a confidence interval, a multiple of G(N)/ae(u), as a
S " stopping criterion [Lavenbers and Saver (1977)]. If 1e(N) 1is smaller than
usual, then because of the high correlation ;(N) will also be smaller than usual.

This leads to a"low miss"of the true answer, i.e. an unusually small confidence

interval centered about an unusually small point estimate. Since sequential rules

are specifically designed to stop on small confidence intervals, the rule inevitably
stops a large proportion of low misses. This will not be a problem with the graphical
methodology given here, since in addition to the lower correlation between atare(m,n)
and srare(m,n), the distributional information displayed will guard against the

skewed data which causes the low miss.

8. SUMMARY AND FURTHER WORK

The statistical and graphical methodology given in this paper has been shownm
to be very effective in verifying the bias and normality properties of regenerative
estimates and in sectioning up a regenerative simulation so that more reliable standard
deviation estimates and confidence interval estimates can be obtained than with the
usual regenerative methodology.

Although the design of the regression for the regression-adjusted regenerative
estimates has been shown to be robust in the cases considered, analytic results to
confirm this in a broader class of simulation situations will be pursued. The
regression-based variance estimate for the regenerative estimate alsoc needs to be
explored further. This will be useful when applications of the methodology to other
statistical and simulation output situations is considered.

Another point to be explored is the use of robust regression techniques,

as at 3i1. This could be fruitful because the ne(j,nk)'s are highly non-normal,

as can be seen in Figure 4C at n, = 50.




Finally we note that the regression-adjusted estimation procedure and its

associated graphics can be applied in many other areas of statistics, and in

particular in the statistical analysis of simulation outputs. Thus if one has an
estimator a(n) - B(xl,....xn) of a parameter 6 from an i.1i.d. sample xl....,xn,
similar estimates 3(j,nk). i= 1,...,mk, can be formed from LW subsections of
the sample for k= 1,...,K to give a regression-adjusted estimator, with graphics,
just as it was done for the regenerative estimator #e(n). This application,

and multivariate extensions, will be explored elsewhere.
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Table 1

. Effects of Subsection.lengths on A2are Estimates of . E(Wemx 9.00 .. @ ¢+ cv .1

e ® .8 .0

in the M/M/1 Queue with p = 0.9. Here R = 200.

Set of ,
Subsection
Lengths for - . 90%
Estimate Aare W S(W) Coverage MSE .
22(2000) 8.725 .086 .810 1.552
are(10,200) 8.086 .071 .715 " 1.847
are(20,100) 7.513 .061 .460 2.948
| arane (10, 200) 5, 8.466 .085 .820 1.707
] arare(10,200) s, 8.459 .075 .820 1.424
’ arare(10,200) Sy 8.753 ©.090 .865 1.661
arane(10,200) S, 8.673 .088 .850 1.659
arane(20,100) S5 8.172 .077 .725 1.864
arane(20,100) S¢ 8.129 .068 .730 1.691 é
anane(20,100) S, 8.466 .078 .790 1.485 1
arane(20,100) Sg 8.459 081 | .780 1.592

Degree of polynomial fitted in regression was 3.
S1 - {nkznk = S5k, k = 1,...,40}

§, = {n,:n_= 5,10, 20, 28, 40, 50, 66, 100, 200}
S, = {nk:nk = 20, 28, 40, 50, 66,100,200} {
5, = {nk:nk = 20 + (k-1)5, k= 1,..., 37}

S5 = {nk:nk =44+ (k=-1)3, k=1,..., 33}

S¢ = {nk:nk =- 4, 7, 10, 14, 20, 25, 33, 50, 100}

8, = {nk:nk = 10,14, 20, 25, 33, 50,100} '

SB = {nk:nk = 10 + (k-1)3, k = 1,..., 31}
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Table 2
. . . Simulation Results for Estimates of E(W) = 9,00 e e
in M/M/1 Queue with p = 0.9. Here R = 100.
Spearman
. . 902 Cofrslation Corrflation
Estimate W S(W) Coverage MSE (W,o0(W)) (W,0(W))
22 (4000) 8.76 .09 .84 .87 77 .67
arane(8,500) (d=2)* 8.74 .09 .87 .87 .64 .48
anare(8,500) (d=3) 8.75 .09 .87 .88 .62 49
are(8,500) 8.47 .08 .81 .95 uaks na
ararne(16,250(d=2) 8.63 .09 .84 .87 .70 .58
aaaae(16,250)(d-3) 8.74 .10 .86 .98 .75 .85
are(16,250) 8.20 .08 .72 1.23 na na
ne(8000) 8.99 .07 .86 .50 .71 .72
arnare(8,1000) (d=2) 9.00 .07 .93 52 .48 .36
anare(8,1000) (d=3) 9.02 .07 .93 .53 .49 .34
ane(8,1000) 8.83 07 .88 .49 na na
arane(16,500) (d=2) 8.94 .07 .88 .49 .56 47
anane(16,500) (d=3) 8.99 .07 .87 .52 .62 .58
ane(16,500) 8.66 .06 .75 .53 na na
22(16000) 9.04 .05 .92 .22 .64 .59
arnare(8,2000) (d=2) 9.05 .05 .93 .22 .50 .43
anwane(8,2000) (d=3) 9.05 .05 .89 .22 .53 .48
are(8,200) 8.96 .05 .88 .20 na na
arane(16,1000) (d=2) 9.04 .05 .93 .22 47 .42
arane(16,1000) (d=3) 9.06 .05 .89 .24 .53 .48
ane(16,1000) 8.88 .04 .87 .21 na na
anare(32,500) (d=2) 9.00 .05 91 .20 .54 .49
anarne(32,500) (d=3) 9.04 .05 91 .23 .59 .56
are(32,500) 8.71 .04 .79 +26 na na
*d = degree of polynomial fitted in regression
**na:not available

subsection lengths {n,} = n/10, [n/7], n/5,n/4, [n/3], n/2, n




Table 3
oo .. Stmilation Results for Estimates of E(W) = 12.77 in M/G/1 Queue ,
with p = 0.9 () = 1.0, uy = 0.5, ¥, = 2.0, p = 0.33). Here R = 200.
Spearman
) . 902 Cox:rflatiou CoEtglation ,
Estimate W S(W) | Coverage MSE (W,S(W)) (W,S5(W))

2e(5000) 12.62 | .09 .810 1.73 .71 .77
ararne(10,500) (d=2)* | 12.56 | .09 .865 | 1.78 .61 .60 )

! arane(10,500) (d=3) 12.61 | .10 .875 1.89 .62 .60

"' ane(10,500) 12.03 .08 .770 2.02 na*% na
72(10000) 12.64 | .07 .850 1.03 .70 .71
ararne(10,1000) (d=2) | 12.66 | .07 .880 1.00 .50 .45

| arane(10,1000) (d=3) | 12.72 | .07 .910 1.01 .52 .46

i are(10,1000) 12.39 | .07 .860 | 1.04 na na

F arare(20,500) (d=2) 12.51 | .07 .825 1.16 .60 .58

’ arare (20,500) (d=3) 12.60 | .08 .825 1.22 .65 .63
are(20,500) 12.00 | .07 .700 1.54 na na
22(20000) 12.78 | .05 .855 .51 .72 .73
arare(5,4000) (d=2) 12.80 | .05 .885 .51 .39 .36
ararne(s,4000) (d=3) 12.80 | .05 .880 .53 .37 .35

E are(5,4000) 12.71 | .05 .870 .50 na na

g arnare(10,2000) (d=2) | 12.78 | .05 .880 .50 .49 .49

: arare(10,2000) (d=3) | 12.81 | .05 .880 .53 .52 .52

; are(10,2000) 12.63 | .05 .820 .50 na na

? arane(20,1000)(d=2) | 12.73 | .05 .860 .52 .52 .49

5 arane(20,1000) (d=3) | 12.79 | .05 .855 .56 .55 .52

: are(20,1000) 12.47 | .05 .815 .59 na na

*
d = dgree of polynomial fitted in regression

w*k
na: not available

r for n = 500, {nk} = 50, 71, 100, 125, 166, 250, 500
5 n = 1000, {nk} = 50, 100, 125, 166, 200, 250, 333, 500, 1000
n = 2000 {nk} = 100, 166, 200, 250, 400, 500, 666, 1000, 2000

400, 571, 800, 1000, 1333, 2000, 4000

n = 4000 {“k}




re(p)

I ' re(2,p)

a):.e(mk,nk)

] arne(J ""k"‘k)

sare(mm, ,n, )

aane(n)

nane(j,n)
fi _ ararne(m,n)

% srane(m,n)

Table 4

Summary of Notation

--regenerative estimate based on p cycles; = § Yk/ § T
k=1 k=1

--realization of 2xe(p) on the Lth subsection out of the m sub-

sections in a replication.

—-average regenerative estimate from subsections of length m s

Illk
- o0 )/m .
121 re(y,n ) /m

--realization of aae(mk,nk) on the jth replication.

=-=overall average regenerative estimate for mm, subsections of

m
length n;= 121 are(j,m ,n, )/m.

--sample variance of aae(mmk,nk);

v — 2 1/2
={] (are(d,m,n) - FE(mm,n))"/m(m-1)}"".

i=1
--regression adjusted regenerative estimate using n cycles.

--realization of aare(n) on the jth replication of a section of

length n.,

-=-average regression adjusted regenerative estimate from m sections

m
of length n;= ) aare(3,n)/m.
i=1

--gsample standard deviation of arare(m,n);

m
={) (rare(s,n) - alla)l.e(m,n))zlm(m-l)}llz.

11
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